Improving Implicit Discourse Relation Recognition with Discourse-specific Word Embeddings

نویسندگان

  • Changxing Wu
  • Xiaodong Shi
  • Yidong Chen
  • Jinsong Su
  • Boli Wang
چکیده

We introduce a simple and effective method to learn discourse-specific word embeddings (DSWE) for implicit discourse relation recognition. Specifically, DSWE is learned by performing connective classification on massive explicit discourse data, and capable of capturing discourse relationships between words. On the PDTB data set, using DSWE as features achieves significant improvements over baselines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implicit Discourse Relation Recognition with Context-aware Character-enhanced Embeddings

For the task of implicit discourse relation recognition, traditional models utilizing manual features can suffer from data sparsity problem. Neural models provide a solution with distributed representations, which could encode the latent semantic information, and are suitable for recognizing semantic relations between argument pairs. However, conventional vector representations usually adopt em...

متن کامل

Learning Connective-based Word Representations for Implicit Discourse Relation Identification

We introduce a simple semi-supervised approach to improve implicit discourse relation identification. This approach harnesses large amounts of automatically extracted discourse connectives along with their arguments to construct new distributional word representations. Specifically, we represent words in the space of discourse connectives as a way to directly encode their rhetorical function. E...

متن کامل

A Minimalist Approach to Shallow Discourse Parsing and Implicit Relation Recognition

We describe a minimalist approach to shallow discourse parsing in the context of the CoNLL 2015 Shared Task.1 Our parser integrates a rule-based component for argument identification and datadriven models for the classification of explicit and implicit relations. We place special emphasis on the evaluation of implicit sense labeling, we present different feature sets and show that (i) word embe...

متن کامل

Comparing Word Representations for Implicit Discourse Relation Classification

This paper presents a detailed comparative framework for assessing the usefulness of unsupervised word representations for identifying so-called implicit discourse relations. Specifically, we compare standard one-hot word pair representations against low-dimensional ones based on Brown clusters and word embeddings. We also consider various word vector combination schemes for deriving discourse ...

متن کامل

Learning better discourse representation for implicit discourse relation recognition via attention networks

Humans comprehend the meanings and relations of discourses heavily relying on their semantic memory that encodes general knowledge about concepts and facts. Inspired by this, we propose a neural recognizer for implicit discourse relation analysis, which builds upon a semantic memory that stores knowledge in a distributed fashion. We refer to this recognizer as SeMDER. Starting from word embeddi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017